在大预言模型中达到9倍的AI训练速度和30倍的AI推理速度。HBM3内存子系统提供近2倍的带宽提升。H100SXM5GPU是世界上款采用HBM3内存的GPU,其内存带宽达到3TB/sec。50MB的L2Cache架构缓存了大量的模型和数据以进行重复访问,减少了对HBM3的重复访问次数。第二代多实例GPU(Multi-InstanceGPU,MIG)技术为每个GPU实例提供约3倍的计算能量和近2倍的内存带宽。次支持机密计算,在7个GPU实例的虚拟化环境中支持多租户、多用户配置。(MIG的技术原理:作业可同时在不同的实例上运行,每个实例都有的计算、显存和显存带宽资源,从而实现可预测的性能,同时符合服务质量(QoS)并尽可能提升GPU利用率。)新的机密计算支持保护用户数据,防御硬件和软件攻击,在虚拟化和MIG环境中更好的隔离和保护虚拟机。H100实现了世界上个国产的机密计算GPU,并以全PCIe线速扩展了CPU的可信执行环境。第四代NVIDIANVLink在全归约操作上提供了3倍的带宽提升,在7倍PCIeGen5带宽下,为多GPUIO提供了900GB/sec的总带宽。比上一代NVLink增加了50%的总带宽。第三代NVSwitch技术包括驻留在节点内部和外部的交换机,用于连接服务器、集群和数据中心环境中的多个GPU。H100 GPU 特价销售,赶快抢购。深圳H100GPU stock

这些线程可以使用SM的共享内存与快速屏障同步并交换数据。然而,随着GPU规模超过100个SM,计算程序变得更加复杂,线程块作为编程模型中表示的局部性单元不足以大化执行效率。Cluster是一组线程块,它们被保证并发调度到一组SM上,其目标是使跨多个SM的线程能够有效地协作。GPC:GPU处理集群,是硬件层次结构中一组物理上总是紧密相连的子模块。H100中的集群中的线程在一个GPC内跨SM同时运行。集群有硬件加速障碍和新的访存协作能力,在一个GPC中SM的一个SM-to-SM网络提供集群中线程之间快速的数据共享。分布式共享内存(DSMEM)通过集群,所有线程都可以直接访问其他SM的共享内存,并进行加载(load)、存储(store)和原子(atomic)操作。SM-to-SM网络保证了对远程DSMEM的快速、低延迟访问。在CUDA层面,集群中所有线程块的所有DSMEM段被映射到每个线程的通用地址空间中。使得所有DSMEM都可以通过简单的指针直接引用。DSMEM传输也可以表示为与基于共享内存的障碍同步的异步复制操作,用于**完成。异步执行异步内存拷贝单元TMA(TensorMemoryAccelerator)TMA可以将大块数据和多维张量从全局内存传输到共享内存,反义亦然。使用一个copydescriptor。HBMH100GPU价格H100 GPU 优惠直降,数量有限。

稀疏性特征利用了深度学习网络中的细粒度结构化稀疏性,使标准张量性能翻倍。新的DPX指令加速了动态规划算法达到7倍。IEEEFP64和FP32的芯片到芯片处理速率提高了3倍(因为单个SM逐时钟(clock-for-clock)性能提高了2倍;额外的SM数量;更快的时钟)新的线程块集群特性(ThreadBlockClusterfeature)允许在更大的粒度上对局部性进行编程控制(相比于单个SM上的单线程块)。这扩展了CUDA编程模型,在编程层次结构中增加了另一个层次,包括线程(Thread)、线程块(ThreadBlocks)、线程块集群(ThreadBlockCluster)和网格(Grids)。集群允许多个线程块在多个SM上并发运行,以同步和协作的获取数据和交换数据。新的异步执行特征包括一个新的张量存储加速(TensorMemoryAccelerator,TMA)单元,它可以在全局内存和共享内存之间非常有效的传输大块数据。TMA还支持集群中线程块之间的异步拷贝。还有一种新的异步事务屏障,用于进行原子数据的移动和同步。新的Transformer引擎采用专门设计的软件和自定义Hopper张量技术相结合的方式。Transformer引擎在FP8和16位计算之间进行智能管理和动态选择,在每一层中自动处理FP8和16位之间的重新选择和缩放。
对于科学计算而言,H100 GPU 提供了强大的计算能力。它能够高效处候模拟、基因组学研究、天体物理学计算等复杂的科学任务。H100 GPU 的大规模并行处理单元和高带宽内存可以提升计算效率和精度,使科学家能够更快地获得研究成果。其稳定性和可靠性也为长时间计算任务提供了坚实保障,是科学计算领域不可或缺的工具。H100 GPU 的高能效设计不仅提升了性能,还为科研机构节省了大量的能源成本。其灵活的扩展性和兼容性使得科学计算能够根据需要进行调整和优化,从而更好地支持前沿科学研究和创新发现。H100 GPU 提供高精度计算支持。

因此线程可以自由地执行其他**的工作。②终线程需要其他所有线程产生的数据。在这一点上,他们做一个"等待",直到每个线程都有"抵达"的信号。-***是允许提前到达的线程在等待时执行**的工作。-等待的线程会在共享内存中的屏障对象上自转(spin)(我理解的就是这些等待的线程在等待的时候无法执行其他工作)也是一个分裂的屏障,但不对到达的线程计数,同时也对事务进行计数。为写入共享内存引入一个新的命令,同时传递要写入的数据和事务计数。事务计数本质上是对字节计数异步事务屏障会在W**t命令处阻塞线程,直到所有生产者线程都执行了一个Arrive,所有事务计数之和达到期望值。异步事务屏障是异步内存拷贝或数据交换的一种强有力的新原语。集群可以进行线程块到线程块通信,进行隐含同步的数据交换,集群能力建立在异步事务屏障之上。H100HBM和L2cache内存架构HBM存储器由内存堆栈组成,位于与GPU相同的物理封装上,与传统的GDDR5/6内存相比,提供了可观的功耗和面积节省,允许更多的GPU被安装在系统中。H100 GPU 在科学计算领域表现出色。深圳H100GPU stock
H100 GPU 的高性能计算能力为此类任务提供了极大支持。深圳H100GPU stock
每个GPU实例在整个内存系统中都有单独的和孤立的路径--片上的交叉开关端口、L2缓存库、内存控制器和DRAM地址总线都是分配给单个实例的。这保证了单个用户的工作负载可以以可预测的吞吐量和延迟运行,具有相同的L2缓存分配和DRAM带宽,即使其他任务正在冲击自己的缓存或使其DRAM接口饱和。H100MIG改进:提供完全安全的、云原生的多租户、多用户的配置。Transformer引擎Transformer模型是当今从BERT到GPT-3使用的语言模型的支柱,需要巨大的计算资源。第四代NVLink和NVLink网络PCIe以其有限的带宽形成了一个瓶颈。为了构建强大的端到端计算平台,需要更快速、更可扩展的NVLink互连。NVLink是NVIDIA公司推出的高带宽、高能效、低延迟、无损的GPU-to-GPU互连。其中包括弹性特性,如链路级错误检测和数据包重放机制,以保证数据的成功传输。新的NVLink为多GPUIO和共享内存访问提供了900GB/s的总带宽,为PCIeGen5提供了7倍的带宽。A100GPU中的第三代NVLink在每个方向上使用4个差分对(4个通道)来创建单条链路,在每个方向上提供25GB/s的有效带宽,而第四代NVLink在每个方向上使用2个高速差分对来形成单条链路,在每个方向上也提供25GB/s的有效带宽。引入了新的NVLink网络互连。深圳H100GPU stock
文章来源地址: http://smdn.chanpin818.com/zjfwq/fwqgzz/deta_25843560.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。